Understanding results of box calculation Hw3: production of pion-like particles

Akira Ono
Department of Physics, Tohoku University

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions
FRIB-MSU, East Lansing, Michigan, USA, March 27-31, 2017

Based on

- Homework 3 results by homework participants
- Discussions with Jun Xu
- Discussions with participants of Week 1 of the ICNT program
- Discussions with homework participants

Progress of Homework 3

Homework 3 (Pion Box Homework) just started half a year ago.

- Phase I: sent out on November 4, 2016; due on January 27, 2017.
- Phase II and Phase III: sent out on January 30, 2017; due on March 19, 2017.
- New Phase II: sent out on March 24, 2017.

Current situation

- New results are still coming up.
- The results submitted early are now relatively stable, after revisions.
- We have some deviations already at the simplest cases Dc1P0 and Dc2P0.
- From the currently available results, we can guess some sources of problems which should be confirmed in future homework.

First results and improvements - Number of particles

20170130 - Option Dc2P0 ($N N \leftrightarrow N \Delta$ with a constant Δ mass; no pions)

First results and improvements - Number of particles

20170327 - Option Dc2P0 ($N N \leftrightarrow N \Delta$ with a constant Δ mass; no pions)
Dc2P0

First results and improvements - Δ mass distribution

20170308 - Option Db2Pb (Breit-Wigner Δ-mass distribution, with pions)

First results and improvements - Δ mass distribution

20170327 - Option Db2Pb (Breit-Wigner Δ-mass distribution, with pions)

Db2Pb

First results and improvements - Δ mass distribution

20170327 - Option Da2Pa (suggests that errors came in by changing the codes for hw)
Da 2 Pa

Some problems in following homework specifications

At the current stage, some disagreement between codes is expected because the homework conditions are not followed precisely by some codes.

- Initialization $\sim \exp \left[-\sqrt{m_{N}^{2}+\mathbf{p}^{2}} / T\right]$ with $T=60 \mathrm{MeV}$ is not correctly done in IQMD-IMP and IQMD-BNU, so the results correspond to a lower temperature.
- Some codes don't sample m_{Δ} mass at $N N \rightarrow N \Delta$ as specified by hw (Db options):

$$
P\left(m_{\Delta}\right) \propto 1 /\left[\left(m_{\Delta}-m_{\Delta}^{0}\right)^{2}+\frac{1}{4} \Gamma^{2}\right] \quad \text { for } \quad m_{N}+m_{\pi}<m_{\Delta}<\sqrt{s}-m_{N}
$$

Understanding results of box calculation Hw3...

Someone put this in the agenda much before we had any results of Box Pion Homework.

Fortunately, thanks to the discussions with the Week 1 participants of the ICNT program and with the homework participants, I have something more to talk about.

Possible sources of the differences among the codes

- Some codes do not follow the homework specification.
- The treatments are different in different codes when a new particle is produced and/or a particle can decay.
- Strange results appear in some codes when pions are swithced on in Pb and Pa options.
- The $N \pi \rightarrow \Delta$ cross section is large ($\sim 200 \mathrm{mb}$), which seems to be the reason. (pointed out by Zhen Zhang)
- The results should depend on whether the decays are calculated before or after the collisions in a time step. (pointed out by Tatsuhiko Ogawa)

Db2P0 \rightarrow Db2Pb: something strange by pions?

Db2P0 (without pions): Reaction rates for $N \Delta \rightarrow N N$

Db2P0 \rightarrow Db2Pb: something strange by pions?

Db2Pb (with pions): Reaction rates for $N \Delta \rightarrow N N$

Numbers of Δ and π in Db2Pb

Observations for the numbers of Δ and π

- In JQMD, $\quad \Delta \gg \pi$
- In IBUU, RVUU and TuQMD, $\quad \Delta<\pi$
- JAM is located between them.

Time step problem

Questions to code participants

- When a pion is produced, can it interact with other particles in the same time step? How is it done?
- When a Δ is produced, can it decay in the same time step? How is it done?
- Do the results change when a smaller Δt is chosen?

Time step problem

Questions to code participants

- When a pion is produced, can it interact with other particles in the same time step? How is it done?
- When a Δ is produced, can it decay in the same time step? How is it done?
- Do the results change when a smaller Δt is chosen?

Time step problem

Questions to code participants

- When a pion is produced, can it interact with other particles in the same time step? How is it done?
- When a Δ is produced, can it decay in the same time step? How is it done?
- Do the results change when a smaller Δt is chosen?

Time step problem

Questions to code participants

- When a pion is produced, can it interact with other particles in the same time step? How is it done?
- When a Δ is produced, can it decay in the same time step? How is it done?
- Do the results change when a smaller Δt is chosen?

Summary

- Box Homework 3 results are still coming up. The results shown here are just a snapshot of this morning.
- Trivial mistakes will be fixed as soon as possible.
- The deviations in Dc1P0 and Dc2P0 must be understood.
- Problems appear when pions are turned on (Pb and Pa).
- Probably related to large $\sigma_{N \pi \rightarrow \Delta}$.
- Probably depends on which are done earlier in a time step, collisions or decays.
- Code participants should describe how the code is doing.
- Check Δt dependence?
- Pb and Pd options are very severe tests of codes.

Code improvements through Box Homework 3

Several types of problems

- Mistakes introduced when the code is changed for the homework.
\Rightarrow OK... We should be more careful next time.
- Inaccuracy of the original code (for heavy-ion collisions)
\Rightarrow Most codes have been (are going to be) improved.
\Rightarrow The predictions by these codes are more reliable in their future works.
I hope the homework participants will explain in their Wednesday/Thursday talks if the code comparison was useful to improve the codes.

